
- дома
- >
Hовости
Настольный рентгеновский дифрактометр ТДМ-10 — компактный и высокоточный прибор для фазового анализа. Ниже приводится подробное описание продукта: 1. Основные функции и области применения настольного рентгеновского дифрактометра ТДМ-10 (1) Фазовый анализ Подходит для качественного и количественного анализа порошкообразных, твердых, пастообразных материалов и тонкопленочных образцов, позволяет определять кристаллическую структуру, фазовый состав и кристалличность образцов. (2) Анализ кристаллической структуры Он может измерять размер зерна, ориентацию кристаллов, макроскопическое/микроскопическое напряжение и структурные свойства материалов. (3) Промышленные и исследовательские приложения Широко используется в таких областях, как геология, материаловедение, химия, биология, медицина и ядерная промышленность, подходит для быстрых лабораторных испытаний и учебных демонстраций. 2. Технические характеристики настольного рентгеновского дифрактометра ТДМ-10 (1) Компактная конструкция и эффективная работа Малый размер, легкий вес, низкое энергопотребление, простота эксплуатации, подходит для настольных сред. Оснащен высокочастотным и высоковольтным источником питания, мощность может достигать 1600 Вт (см. модель ТДМ-20), что обеспечивает стабильность рентгеновского излучения. (2) Высокоточное измерение Точность измерения положения пика дифракции достигает 0,001°, с превосходной угловой повторяемостью, отвечающей требованиям высокоточного анализа. Используя принципы геометрии Дебая-Шеррера и закона Брэгга, сигнал отражения кристалла регистрируется посредством дифракции конической поверхности, достигая точной идентификации фазы. (3) Интеллектуальное управление и обработка данных Сбор данных под управлением компьютера, поддерживающий сбор и обработку данных в режиме реального времени в системе Окна с интуитивно понятным интерфейсом управления. Может использоваться в сочетании с матричными детекторами (имеется в виду высокопроизводительная технология детекторов ТДМ-20) для повышения эффективности и чувствительности обнаружения. 3. Применимые сценарии настольного рентгеновского дифрактометра ТДМ-10 (1) Область исследования Университеты и научно-исследовательские институты используются для исследования и разработки материалов, анализа кристаллической структуры и характеристики наноматериалов. (2) Промышленное применение Идентификация минералов, анализ состава лекарственных средств, испытания безопасности пищевых продуктов (например, скрининг кристаллических примесей) и т. д. (3) Демонстрация обучения Простое в эксплуатации настольное устройство, подходящее для экспериментального обучения студентов, охватывающее основы теории и практического применения фазового анализа. 4. Технические параметры настольного рентгеновского дифрактометра ТДМ-10 (1) Точность измерения: точность положения пика дифракции 0,001° (2) Метод управления: компьютерное управление (система Окна) (3) Источник питания: конструкция с низким энергопотреблением, высокочастотный источник питания высокого напряжения (4) Детектор: поддерживает матричные детекторы или пропорциональные детекторы (см. принадлежности ТДМ-20) (5) Подставка для образцов: может использоваться в паре с вращающейся подставкой для образцов или автоматическим устройством смены образцов (дополнительная принадлежность) 5. Преимущества настольного рентгеновского дифрактометра ТДМ-10 (1) Высокая экономическая эффективность: отечественное оборудование отличается выдающимися характеристиками и значительно дешевле импортного, что делает его подходящим для лабораторий с ограниченным бюджетом. (2) Быстрое обнаружение: оптимизирует процесс калибровки, сокращает время тестирования и повышает эффективность эксперимента. (3) Масштабируемость: поддерживает множество дополнительных устройств (например, низкотемпературные системы охлаждения, стационарные аккумуляторные устройства и т. д.), которые можно расширить для анализа специальных сценариев. 6. Родственные серии и сравнение настольного рентгеновского дифрактометра ТДМ-10 Модель ТДМ-20: ТДМ-20 — это модернизированная версия ТДМ-10 с более высокой мощностью (1600 Вт), новыми высокопроизводительными матричными детекторами, поддержкой автоматических сменщиков образцов и другими принадлежностями, подходящая для более сложных промышленных и научно-исследовательских нужд. Другие модели: Серия ТД компании Даньдун Тонгда также включает в себя дифракционные приборы высокого разрешения, такие как ТД-3500 и ТД-3700, а также кристаллические анализаторы серии ТДФ, охватывающие потребности многомерного анализа. Настольный рентгеновский дифрактометр ТДМ-10 стал предпочтительным оборудованием для лабораторного фазового анализа благодаря своей компактной конструкции, высокоточным измерениям и интеллектуальному управлению. Он имеет широкий спектр сценариев применения, особенно подходит для научных исследований и промышленных сред, где требуется быстрое и точное обнаружение. Если требуется более высокая конфигурация, можно рассмотреть ТДМ-20 или другие модели той же серии.
Рентгеновский облучатель — научно-исследовательское оборудование, использующее рентгеновские лучи для облучения биологических образцов, материалов или мелких животных и широко применяемое в таких областях, как биология, медицина и материаловедение. 1. Основные функции и технические принципы рентгеновского облучательного оборудования (1) Функциональное позиционирование Биологические исследования: используются для изучения повреждений ДНК, клеточного мутагенеза, индукции дифференциации стволовых клеток, исследования механизмов опухолей, экспериментов в области иммунологии и генной терапии и т. д. Медицинское применение: радиационная дезинфекция, переработка препаратов крови, анализ апоптоза опухолевых клеток, предварительная обработка перед трансплантацией органов и т. д. Материаловедение и экология: модификация наноматериалов, радиационный карантин пищевых продуктов, анализ загрязнителей почвы и т. д. (2) Технические принципы Путем ускорения электронов с помощью высокого напряжения для столкновения с металлическими мишенями генерируются рентгеновские лучи; после оптимизации с помощью фильтров, устройств ограничения пучка и т. д. образец облучается для достижения целевого воздействия путем точного контроля мощности дозы, времени облучения и диапазона. 2. Основные технические параметры рентгеновского облучательного оборудования (1) Эффективность излучения Напряжение трубки: 30–225 кВ (различаются в зависимости от модели). Мощность дозы: 0,1–16 Гр/мин, с возможностью точной и плавной регулировки. Однородность дозы: ≥ 95% (лучший в отрасли уровень). Угол излучения и зона покрытия: максимальный угол излучения составляет 40 градусов, а диаметр покрытия — до 30 см. (2) Эксплуатация и проектирование безопасности Интеллектуальное управление: интерфейс управления с сенсорным экраном, функция экспорта данных (совместима с Эксель). Защита: свинцовый экранированный шкаф, доза облучения окружающей среды<20 μ R/h (5cm away from equipment), multiple interlocks and fault alarms. Система охлаждения: технология охлаждения замкнутого цикла продлевает срок службы рентгеновских трубок (до 2000 часов). (3) Применимые типы образцов Клетки, органы тканей, бактерии, мыши, крысы и т. д. поддерживают облучение мелких животных, находящихся в сознательном или анестезированном состоянии. 3.Типичные продукты и производители рентгеновского оборудования Представитель на внутреннем рынке: Dandong Tongda Technology Co., Ltd. Преимущества: Локализация снижает затраты на закупки, упрощает операции (без необходимости в сложных знаниях в области рентгенографии) и соответствует национальным стандартам безопасности. 4. Расширение областей применения рентгеновского облучательного оборудования (1) Биология и медицина Исследования клеток: индуцирование генных мутаций, регуляция клеточного цикла, анализ передачи сигналов. Исследования опухолей: облучение моделей опухолевых клеток для изучения механизмов апоптоза или чувствительности к радиации. Доклинические исследования: облучение всего тела мелких животных (например, мышей) для исследования кроветворной системы, иммунного ответа и т. д. (2) Материаловедение и экология Модификация наноматериалов: изменение кристаллической структуры или поверхностных свойств материалов посредством облучения. Карантин пищевых продуктов: неразрушающее обнаружение посторонних предметов, остаточных консервантов или микробная инактивация. Утилизация ядерных отходов: помощь в анализе распределения радиоактивных материалов для обеспечения безопасной утилизации. (3) Сельское хозяйство и разведение Мутационная селекция: облучение семян растений или насекомых для ускорения мутаций генов и выявления превосходных признаков. 5. Тенденции развития и проблемы рентгеновского облучательного оборудования (1) Направление технической модернизации Интеллект: объединение алгоритмов ИИ для оптимизации распределения дозы и экспериментального дизайна. Безопасность: снижение утечки радиации в окружающую среду и повышение стандартов защиты. Многофункциональная интеграция: например, интеграция функций КТ-визуализации и облучения для достижения интеграции «обнаружения и обработки». (2) Проблемы отрасли Высокоточный контроль дозы и стабильность требуют постоянной оптимизации. Необходимо больше базовых данных для поддержки различий в чувствительности к радиации среди биологических образцов. В целом, рентгеновское облучение является незаменимым инструментом в научных исследованиях и промышленности. Рентгеновское облучение, производимое компанией Dandong Tongda Technology Co., Ltd., достигает баланса между производительностью и стоимостью и широко используется в различных областях. В будущем, с технологической итерацией, сфера его применения будет расширяться до передовых направлений, таких как точная медицина и новые исследования и разработки материалов.
1. Рентгеноструктурный кристаллоанализатор серии ТДФ Функции и применение: Эта серия оборудования в основном используется для изучения внутренней микроструктуры материалов, подходит для ориентации монокристаллов, проверки дефектов, определения параметров решетки, анализа остаточных напряжений, исследования структуры пластин/стержней, анализа структуры неизвестных материалов и анализа дислокаций монокристаллов. Технические характеристики: Будучи крупномасштабным аналитическим прибором, серия ТДФ объединяет высокоточную технологию рентгеновской дифракции, которая может обеспечить глубокий анализ микроструктур и поддержать исследования и контроль качества в таких областях, как материаловедение, производство полупроводников и обработка кристаллов. В рентгеновском кристаллическом анализаторе серии ТДФ используется вертикальная трубчатая гильза, и одновременно можно использовать четыре окна. Рентгеновский кристаллический анализатор серии ТДФ использует импортную технологию управления ПЛК с высокой точностью управления и хорошими характеристиками защиты от помех, что позволяет добиться надежной работы системы. ПЛК управляет высоковольтным переключателем, подъемом и имеет функцию автоматической тренировки рентгеновской трубки, эффективно продлевая срок службы рентгеновской трубки и прибора. 2. Рентгеновский кристалл-ориентатор Функция и применение: Используя принцип рентгеновской дифракции, можно быстро и точно определить угол резания природных или искусственных монокристаллов (например, пьезоэлектрических кристаллов, оптических кристаллов, лазерных кристаллов, полупроводниковых кристаллов). При использовании с режущим станком можно добиться направленной резки. Широко используется в исследовательских, обрабатывающих и производственных отраслях кристаллических материалов. Технические преимущества: Он может заменить традиционную технологию облучения радиоактивными изотопами и непосредственно выполнять высокоточный направленный анализ в лаборатории, повышая эффективность и точность обработки кристаллов.
Настольный рентгеновский дифрактометр ТДМ-20 — компактный настольный прибор, используемый в основном для фазового анализа материалов и исследования кристаллической структуры. 1. Основные функции настольного рентгеновского дифрактометра ТДМ-20 Фазовый анализ ТДМ-20: ТДМ-20 может выполнять качественный/количественный анализ поликристаллических образцов, таких как порошки, твердые вещества и пастообразные материалы. Анализ кристаллической структуры ТДМ-20: основанный на принципе рентгеновской дифракции, ТДМ-20 поддерживает анализ кристаллической структуры образцов металлов, минералов, соединений и т. д. 2. Технические характеристики настольного рентгеновского дифрактометра ТДМ-20 Высокая мощность и производительность ТДМ-20: с использованием высокочастотного высоковольтного источника питания мощность увеличена до 1600 Вт. Оснащен новыми высокоскоростными матричными детекторами или пропорциональными детекторами для повышения эффективности и точности сбора данных. Удобная эксплуатация ТДМ-20: Устройство имеет небольшие размеры и вес, подходит для компактных лабораторных помещений; Поддерживает быструю калибровку и тестирование, с простым управлением схемой и легкой установкой и отладкой. Точность и стабильность ТДМ-20: повторяемость угла достигает 0,0001°, а линейность угла дифракции по всему спектру составляет ± 0,01°. Масштабируемость ТДМ-20: ТДМ-20 может быть оснащен 6-разрядным автоматическим устройством смены образцов, вращающимся предметным столиком, низкотемпературной системой охлаждения и принадлежностями для работы при высоких/средних низких температурах на месте для удовлетворения различных потребностей в испытаниях. 3. Сценарии применения настольного рентгеновского дифрактометра ТДМ-20 Области исследований ТДМ-20 включают характеристику кристаллической структуры и анализ фазовых переходов в материаловедении, геологии и фармацевтических исследованиях. Промышленное применение ТДМ-20: оценка консистенции лекарственных препаратов в фармацевтической промышленности, идентификация минералов, анализ нефтехимических катализаторов, испытания на безопасность пищевых продуктов (например, определение состава кристаллов). Образование и национальная оборона ТДМ-20: быстрая идентификация фаз в университетских учебных экспериментах и разработка материалов для национальной обороны. 4. Производители и комплектующие ТДМ-20 Производитель: Даньдун Тонгда Технологии Ко., ООО. Дополнительные принадлежности: одномерный матричный детектор, пропорциональный детектор, 6-разрядное устройство автоматической смены образцов, вращающийся предметный столик, графитовый изогнутый кристалл-монохроматор и т. д. В целом, ТДМ-20, благодаря своей высокой мощности, высокой точности и компактной конструкции, стал эффективным инструментом для лабораторного фазового анализа и широко используется в научных исследованиях, промышленности и учебных заведениях.
Рентгеновский дифрактометр ТД-3500 (ТД-3500XRD) — это высокопроизводительный аналитический прибор, производимый компанией Даньдун Тонгда Технологии Ко., ООО. Он в основном используется для анализа кристаллической структуры, фазового состава и свойств материалов. 1. Основные технические параметры рентгеновского дифрактометра ТД-3500 Источник рентгеновского излучения дифрактометра ТД-3500: Обеспечивает выбор материала мишени Cu K α или Мо K α, с регулируемым диапазоном напряжения трубки 10 ~ 60 кВ и диапазоном тока трубки 2 ~ 80 мА, поддерживает высокочастотные и высоковольтные твердотельные генераторы или генераторы промышленной частоты. Оснащен импортной системой управления Сименс ПЛК, он обеспечивает автоматическое переключение световых затворов, регулирование давления/потока трубки и функции обучения рентгеновской трубки с высокой стабильностью. Система измерения углов рентгеновского дифрактометра ТД-3500: Принимая θ -2 θ вертикальную структуру с радиусом дифракционного круга 185 мм (регулируется до 285 мм), он поддерживает тестирование жидких, зольных, порошковых и блочных образцов. Угловое разрешение достигает 0,0001 градуса, точность шага составляет 0,0001 градуса, а диапазон измерения угла составляет -5 °~165 ° (2 θ), что подходит для высокоточного анализа кристаллов. Детектор рентгеновского дифрактометра ТД-3500: Дополнительный пропорциональный детектор (ПК) или сцинтилляционный детектор (СК) с линейным диапазоном счета ≥ 700000 имп/с и фоновым шумом ≤ 1 имп/с. Оснащен технологией двухкристального монохроматора, эффективно подавляющего компонент K α 2 и улучшающего монохроматичность излучения. Управление и программное обеспечение рентгеновского дифрактометра ТД-3500: Система взаимодействия человека с машиной на основе импортного ПЛК и цветного сенсорного экрана, поддерживающая настройку параметров, мониторинг в реальном времени и диагностику неисправностей. Программное обеспечение имеет такие функции, как сопоставление фазовых диаграмм, анализ напряжений и расчет размера зерна, а также может генерировать стандартизированные отчеты. 2. Технические характеристики и преимущества рентгеновского дифрактометра ТД-3500 Высокая точность и стабильность рентгеновского дифрактометра ТД-3500: В приборе для измерения угла используются импортные высокоточные подшипники и полностью замкнутая система сервопривода с автоматической коррекцией ошибок движения и повторяемостью лучше 0,0006 °. Модульная конструкция ПЛК обладает высокой помехоустойчивостью, поддерживает длительную безотказную работу и может расширять множество функциональных аксессуаров. Безопасность и защита рентгеновского дифрактометра ТД-3500: Электронное устройство блокировки свинцовой двери обеспечивает двойную защиту, при этом световой затвор и свинцовая дверь блокируются для обеспечения безопасной работы. Оснащенное циркуляционной системой охлаждения водой (раздельной или интегрированной), оно автоматически контролирует температуру воды и контролирует температуру рентгеновской трубки, чтобы избежать блокировки. Интеллектуальная работа рентгеновского дифрактометра ТД-3500: Сенсорный экран отображает состояние прибора в реальном времени, поддерживает настройки параметров (такие как диапазон сканирования, размер шага, время выборки) и удаленную диагностику неисправностей. Предустановленные режимы сканирования (θ -2 θ, дифракция монокристалла, анализ тонкой пленки) для соответствия различным требованиям к образцам. 3. Основные области применения рентгеновского дифрактометра ТД-3500 Анализ материалов рентгеновского дифрактометра ТД-3500: Качественный/количественный анализ фаз, идентификация кристаллической структуры, определение размера зерна и кристалличности. Фазовый состав и анализ напряжений таких материалов, как полупроводники, керамика, металлы, полимеры и т. д. Исследовательский эксперимент рентгеновского дифрактометра ТД-3500: Анализ ориентации пленок, исследование фазовых переходов материалов катализаторов/аккумуляторов и характеристика структур наноматериалов. Биологические кристаллы, макроскопическое/микроскопическое измерение напряжений и анализ изменения температуры материалов (требуется использование термического анализатора). Типичный вариант использования рентгеновского дифрактометра ТД-3500: Уханьский технологический университет (исследование структуры новых материалов), Пекинский технологический институт (исследование фазовых превращений оксидов и полупроводников), Университет Тунцзи (анализ структуры титановых сплавов) и т. д. 4. Основные моменты эксплуатации и обслуживания рентгеновского дифрактометра ТД-3500 Процесс работы рентгеновского дифрактометра ТД-3500: Запуск и предварительный нагрев в течение 10-15 минут → Подготовка и фиксация образца → Установка параметров сканирования (таких как диапазон 2 θ, ширина шага, давление/поток трубки) → Начало сканирования → Анализ данных. Поддержка комбинации СЭМ и ЭЦП для достижения комплексной характеристики микро/наноструктур и компонентов. Широко используемый в материаловедении, химии, физике и других областях, он является предпочтительным инструментом для анализа кристаллической структуры и фаз.
Рентгеновский дифрактометр ТД-3700 — это высокопроизводительный и высокоразрешающий рентгеновский анализатор, отличающийся быстротой анализа, удобством эксплуатации и высокой безопасностью. 1. Технические характеристики рентгеновского дифрактометра ТД-3700 (1) Основная конфигурация рентгеновского дифрактометра Оснащен высокоскоростным одномерным матричным детектором или СДД-детектором, использующим технологию смешанного счета фотонов, нет никаких шумовых помех, а скорость сбора данных намного превосходит традиционные сцинтилляционные детекторы (с увеличением скорости более чем в сто раз), и он имеет большой динамический диапазон (24 бита) и превосходное энергетическое разрешение (687 ± 5 эВ). Оснащен импортным программируемым логическим контроллером (ПЛК), он достигает автоматизированного управления, низкого уровня отказов, сильной помехоустойчивости и обеспечивает стабильную работу высоковольтного источника питания для рентгеновских трубок. (2) Система измерения угла рентгеновского дифрактометра Принимая структуру прибора для измерения вертикального угла θ/θ, образец размещается горизонтально и поддерживает тестирование различных форм образцов, таких как жидкость, золь, порошок и блок, чтобы избежать попадания образцов в подшипник и возникновения коррозии. Диапазон сканирования угла 2 θ составляет -110 °~161 ° с минимальным шагом 0,0001 °, повторяемостью ± 0,0001 ° и линейностью угла ± 0,01 °, что подходит для высокоточного структурного анализа. Поддерживает как обычный режим отражения, так и режим пропускания, причем последний имеет более высокое разрешение и подходит для следовых образцов (таких как порошки с низким выходом) и структурного анализа. (3) Система генерации рентгеновского излучения рентгеновского дифрактометра Номинальная мощность может быть выбрана от 3 кВт до 5 кВт, с диапазоном напряжения трубки от 10 до 60 кВ, током трубки от 2 до 80 мА и стабильностью ≤ 0,005%. Стандартный целевой материал Кр/Ко/Cu, подходящий для различных требований анализа материалов. 2. Программное обеспечение и управление рентгеновским дифракционным прибором ТД-3700 (1) Управляющее программное обеспечение для рентгеновского дифрактометра Полностью китайский интерфейс, поддерживает систему Окна ХР, может автоматически регулировать давление в трубке, поток в трубке и выключатель света, с функцией обучения старению рентгеновской трубки. Прикладное программное обеспечение обеспечивает функции обработки, такие как поиск пиков, вычитание фона, десорбция K α 2, вычисление интегрирования, сравнение спектров и т. д. Поддерживает вставку текстовых аннотаций и различные операции масштабирования. (2) Безопасность эксплуатации рентгеновского дифрактометра Двойная система защиты (связь светового и свинцового затворов), скорость утечки рентгеновского излучения ≤ 0,1 мкЗв/ч, в соответствии с национальными стандартами. Оснащен циркуляционной системой охлаждения (раздельной или интегрированной), автоматическим контролем температуры и контролем расхода воды, давления хладагента и т. д., чтобы избежать засорения рентгеновской трубки. 3. Сценарии применения рентгеновского дифрактометра ТД-3700 (1) Основная функция рентгеновского дифрактометра Качественный/количественный анализ фаз, анализ кристаллической структуры, определение размера зерна и кристалличности. Макроскопическое/микроскопическое обнаружение напряжений, анализ ориентации материалов (например, тонких пленок, объемных образцов). (2) Применимые области рентгеновского дифрактометра Материаловедение: керамика, металлы, полимеры, сверхпроводящие материалы и т. д. Окружающая среда и геология: анализ почвы, горных пород, минералов и нефтяной каротаж. Химия и фармацевтика: идентификация фармацевтических ингредиентов, испытание кристалличности химических продуктов. Другое: инспекция пищевых продуктов, электронных материалов, магнитных материалов и т. д. 4. Преимущества рентгеновского дифрактометра ТД-3700 (1) Модульная конструкция: аппаратная система является модульной и поддерживает множество аксессуаров (таких как оптические аксессуары и программное обеспечение специального назначения), которые подключаются по принципу «затыкать и играть» без необходимости ручной настройки оптического пути. (2) Эффективная и безопасная балансировка: управление одним щелчком упрощает процесс, одновременно снижая риск сбоя благодаря управлению ПЛК, системе защиты и автоматическим функциям сигнализации (таким как защита от перегрузки по току и предупреждение о перегреве). (3) Прорыв в локализации: серия ТД — единственное оборудование Рентгенодифракционный анализ в Китае, в котором используется технология программируемого контроллера, производительность которого сопоставима с импортными моделями (например, D8 ПРОДВИГАТЬ), а частота отказов значительно снижена. Рентгеновский дифрактометр ТД-3700 — мощный и широко используемый рентгеновский дифрактометр. Высокопроизводительный детектор, точная система измерения углов, мощные программные функции и широкий спектр областей применения делают его важным инструментом в научных исследованиях и промышленном производстве.
Специальные гофрированные керамические трубки, металлокерамические трубки и стеклянные трубки для аналитических приборов, подходящие для различных моделей Рентгенодифракционный анализ, РФА, анализаторов кристаллов и приборов ориентации в стране и за рубежом. Рентгеновская трубка — это вакуумный электронный прибор, который генерирует рентгеновские лучи путем высокоскоростного электронного удара по металлическому материалу мишени. Его структура, принцип и применение включают в себя различные технические характеристики. 1. Базовая структура рентгеновской трубки (1) Катод (источник электронной эмиссии) Рентгеновская трубка, состоящая из вольфрамовой нити, нагревается и испускает электроны после включения, и обернута вокруг фокусирующей крышки (катодной головки) для управления направлением электронного пучка. Температура нити составляет около 2000 К, а испускание электронов регулируется током. (2) Анод (целевой материал) Обычно металлы с высокой температурой плавления (такие как вольфрам, молибден, родий и т. д.) используются для выдерживания высокоэнергетической электронной бомбардировки и генерации рентгеновских лучей. Содержит анодную головку (поверхность мишени), анодный колпачок, стеклянное кольцо и анодную ручку, отвечающую за рассеивание тепла (через излучение или проводимость) и поглощение вторичных электронов. (3) Вакуумная оболочка и окно Стеклянная или керамическая оболочка поддерживает среду высокого вакуума (не менее 10 ⁻⁴ Па) для предотвращения рассеивания электронов. Материалы окон требуют низкого поглощения рентгеновских лучей, обычно используют листы бериллия, алюминий или стекло Линдемана. 2. Принцип работы рентгеновской трубки (1) Ускорение электронов и удар Электроны, испускаемые катодной нитью, ускоряются высоким напряжением (в диапазоне от киловольт до мегавольт) и сталкиваются с материалом анодной мишени. Процесс преобразования электронной кинетической энергии в рентгеновские лучи включает: Тормозное излучение: непрерывный спектр рентгеновских лучей, испускаемых при замедлении или отклонении электронов. Характеристическое излучение: рентгеновские лучи (такие как линии Kα и Kβ), испускаемые при электронных переходах во внутреннем слое материала мишени. (2) Преобразование энергии и эффективность Только около 1% энергии электронов преобразуется в рентгеновские лучи, а остальная часть рассеивается в виде тепла, требуя принудительного охлаждения (например, конструкция с вращающимся анодом). 3. Классификация и области применения рентгеновских трубок (1) Путем создания электронных средств Надувная трубка: ранний тип, в котором для генерации электронов используется ионизация газа, с низкой мощностью и коротким сроком службы (в настоящее время устарел). Электронная лампа: современная широко распространенная среда высокого вакуума повышает эффективность и стабильность электроники. (2) По назначению В медицинской сфере, диагностических (например, стоматологических и маммологических) и терапевтических (например, радиотерапии) рентгеновских трубках часто используются вращающиеся аноды для увеличения плотности мощности. Промышленные испытания: неразрушающий контроль, анализ структуры материалов и т. д. с упором на высокую проникающую способность (жесткое рентгеновское излучение). (3) По способу охлаждения Фиксированный анод: простая конструкция, подходит для маломощных сценариев. Вращающийся анод: поверхность мишени вращается с высокой скоростью (до 10000 оборотов в минуту), что улучшает рассеивание тепла и обеспечивает высокую выходную мощность. 4. Эксплуатационные характеристики и ограничения рентгеновских трубок (1) Преимущества Низкая стоимость, небольшой размер, простота эксплуатации, подходит для рутинных медицинских и промышленных испытаний. Гибкая настройка целевых материалов (таких как вольфрам, молибден, медь) для удовлетворения различных энергетических потребностей. (2) Ограничения Плохая яркость и коллимация, большой угол расхождения рентгеновских лучей, требующий дополнительных коллиматоров. Энергетический спектр непрерывен и содержит характерные линии, требующие фильтрации или монохроматизации (например, использование никелевых фильтров для удаления линий Kβ). 5. Сравнение рентгеновских трубок и источников синхротронного излучения (1) Яркость и поток Рентгеновская трубка: Низкая яркость, подходит для рутинных испытаний. Источник света синхротронного излучения: с яркостью в 106~1012 раз выше, подходит для передовых исследований, таких как нановизуализация и кристаллография белков. (2) Спектральные характеристики Рентгеновская трубка: Дискретные характеристические линии + непрерывный спектр, диапазон энергий ограничен ускоряющим напряжением. Синхротронное излучение: широкий непрерывный спектр (от инфракрасного до жесткого рентгеновского излучения), точно настраиваемый. (3) Временные характеристики Рентгеновская трубка: непрерывные или микросекундные импульсы (вращающаяся мишень). Синхротронное излучение: импульсы фемтосекундного уровня, подходящие для изучения динамических процессов, таких как химические реакции. 6. Технические параметры рентгеновской трубки (1) Дополнительные типы материалов мишени: Cu, Ко, Фе, Кр, Мо, Ти, W и т. д. (2) Тип фокусировки: 0,2 × 12 мм2 или 1 × 10 мм2 или 0,4 × 14 мм2 (точная фокусировка) (3) Большая выходная мощность: 2,4 кВт или 2,7 кВт В целом, рентгеновские трубки доминируют в таких областях, как медицинская диагностика и промышленные испытания, благодаря своей практичности и экономичности, но ограничены узкими местами производительности. Для сцен, требующих высокого разрешения и высокой яркости (например, передовые научные исследования), необходимо полагаться на передовые технологии, такие как источники синхротронного излучения. Будущие направления развития включают повышение эффективности преобразования энергии, оптимизацию структур рассеивания тепла и разработку миниатюрных источников рентгеновского излучения.
Рентгеновский абсорбционный спектрометр тонкой структуры (XAFS) — мощный инструмент для изучения локальной атомной или электронной структуры материалов, широко используемый в таких популярных областях, как катализ, энергетика и нанотехнологии. Основной принцип работы спектрометра тонкой структуры поглощения рентгеновских лучей (XAFS) заключается в том, что когда энергия рентгеновских лучей резонирует с энергией внутренней электронной оболочки элемента в образце, резкое увеличение электронов возбуждается, образуя непрерывный спектр, который называется краем поглощения. Вблизи края поглощения, по мере увеличения энергии рентгеновских лучей, скорость поглощения монотонно уменьшается с увеличением глубины проникновения рентгеновских лучей. Когда спектр выходит за пределы определенного края, можно наблюдать тонкие структуры, где области поглощения рентгеновских лучей вблизи краевых структур (XANES) появляются, как только пики и плечи шириной, превышающей 20-30 электрон-вольт, проходят через начальную точку края. Тонкая структура, расположенная на высокоэнергетической стороне края, где энергия затухает до нескольких сотен электрон-вольт, называется тонкой структурой поглощения рентгеновских лучей (XAFS). Основными характеристиками рентгеновского абсорбционного тонкоструктурного спектрометра (XAFS) являются: Чувствительность к ближнему порядку: зависит от ближнего порядка и не зависит от дальнего порядка, что позволяет измерять широкий спектр образцов. Может использоваться для аморфных, жидких, расплавленных, активных центров катализаторов, металлических белков и т. д., а также для структурных исследований примесных атомов в кристаллах. Сильные элементные характеристики: Край поглощения рентгеновских лучей имеет элементные характеристики, и для атомов различных элементов в образце можно изучать структуру атомных соседей различных элементов в одном и том же соединении, регулируя энергию падающего рентгеновского излучения. Высокая чувствительность: метод флуоресценции можно использовать для измерения образцов элементов с концентрацией до одной миллионной. Комплексное получение структурной информации: возможность предоставления параметров, определяющих локальную структуру, таких как расстояние между поглощающими атомами и соседними атомами, количество и тип этих атомов, а также степень окисления поглощающих элементов. Подготовка образца проста: не требуется монокристалл, а в условиях эксперимента время сбора данных относительно короткое. При использовании синхротронного источника рентгеновского излучения для измерения спектральной линии обычно требуется всего несколько минут. Основными преимуществами рентгеновского абсорбционного тонкоструктурного спектрометра (XAFS) являются: Основное преимущество: продукт с самым высоким световым потоком Поток фотонов, превышающий 1000000 фотонов/сек/эВ, со спектральной эффективностью, в несколько раз превышающей другие продукты; Получение качества данных, эквивалентного синхротронному излучению Превосходная стабильность: Стабильность интенсивности монохроматического света источника света лучше 0,1%, а дрейф энергии при повторном сборе составляет менее 50 мэВ. Предел обнаружения 1%: Высокий световой поток, превосходная оптимизация оптического пути и превосходная стабильность источника света гарантируют возможность получения высококачественных данных EXAFS, даже если содержание измеряемого элемента составляет >1%. 4. Области применения рентгеновского абсорбционного тонкоструктурного спектрометра (XAFS): Область энергетики: например, исследования литиевых батарей и других материалов для вторичных батарей, исследования топливных элементов, исследования материалов для хранения водорода и т. д. XAFS можно использовать для определения концентрации, валентного состояния, координационной среды и динамических изменений атомов ядра во время циклов заряда-разряда и электрохимических реакций. Область катализа: используется для исследований катализа наночастиц, катализа отдельных атомов и т. д. Получите морфологию катализатора на носителе, форму взаимодействия с носителем и ее изменения в ходе каталитического процесса с помощью XAFS, а также соседние структуры ионов металлов с чрезвычайно низким содержанием. В области материаловедения рентгеновский абсорбционный спектрометр тонкой структуры (XAFS) используется для характеристики различных материалов, изучения сложных систем и неупорядоченных структурных материалов, исследования радиоактивных изотопов, изучения связанных свойств поверхностных и интерфейсных материалов, а также изучения динамических изменений в материалах. В области геологии рентгеновский абсорбционный спектрометр тонкой структуры (XAFS) может использоваться для анализа валентного состояния элементов рудных материалов при геологических исследованиях. Область экологии: КС может использоваться для анализа валентного состояния элементов Кр/Как и т. д. В области радиохимии рентгеновский абсорбционный спектрометр тонкой структуры (XAFS) может использоваться для анализа валентного состояния элементов Се, U и т. д. Спектрометр тонкой структуры рентгеновского поглощения (XAFS) играет важную роль в современных научных исследованиях благодаря своему уникальному принципу работы, значительным характеристикам и широким областям применения. Он предоставляет людям мощные средства для более глубокого понимания микроструктуры и химического состояния вещества, способствуя развитию и прогрессу множества дисциплинарных областей.
Основное назначение переносной рентгеновской испытательной машины для сварки неразрушающий контроль заключается в проверке качества обработки и сварки материалов и компонентов, таких как корпуса судов, трубопроводы, сосуды высокого давления, котлы, самолеты, транспортные средства и мосты в таких промышленных секторах, как национальная оборона, судостроение, нефтяная, химическая, машиностроительная, аэрокосмическая и строительная промышленность, а также внутренних дефектов и собственного качества различных легких металлов, резины, керамики и т. д. Принцип действия и применение портативной рентгеновской испытательной машины для сварки неразрушающий контроль: Переносной рентгеновский сварочный испытательный аппарат неразрушающий контроль использует акустические, оптические, магнитные и электрические свойства материалов для обнаружения дефектов или неровностей в испытываемом объекте без повреждения или влияния на его производительность. Они предоставляют такую информацию, как размер дефекта, местоположение, характер и количество. По сравнению с разрушающим контролем, он имеет следующие характеристики. Первый - неразрушающий, так как он не ставит под угрозу производительность обнаруженного объекта во время тестирования; Второй - всесторонний, так как обнаружение является неразрушающим, необходимо провести 100% всестороннее обнаружение испытываемого объекта, что не может быть достигнуто разрушающим контролем; Третий - всесторонний, и разрушающий контроль, как правило, применим только к испытанию сырья, такого как растяжение, сжатие, изгиб и т. д., обычно используемого в машиностроении. Разрушающий контроль проводится на производственном сырье, а для готовых изделий и используемых предметов разрушающий контроль не может быть проведен, если они не предназначены для дальнейшего использования. С другой стороны, он не наносит ущерба производительности испытываемого объекта. Таким образом, он может не только выполнять полное тестирование технологического процесса производства сырья, промежуточных процессов и даже готовой продукции, но и тестировать оборудование, находящееся в эксплуатации. Характеристики переносной рентгеновской испытательной машины для сварки неразрушающий контроль: Рентгеновский генератор имеет небольшой объем, заземленный анод и принудительное охлаждение вентилятором; ◆ Легкий, удобный для переноски и простой в эксплуатации; Работа и отдых в соотношении 1:1; Красивый внешний вид и разумная структура; ◆ Отсроченное воздействие для обеспечения безопасности оператора; Диапазон визуального контроля портативной рентгеновской сварочной испытательной машины неразрушающий контроль 1. Проверка поверхностных дефектов сварных швов. Проверка качества сварки, таких как поверхностные трещины, непровары и негерметичность сварного шва. 2. Проверка состояния. Проверьте поверхность на наличие трещин, отслоений, растяжений, царапин, вмятин, выступов, пятен, коррозии и других дефектов. 3. Проверка внутренней полости. При работе определенных изделий (например, насосов с червячной передачей, двигателей и т. д.) проведите эндоскопическое тестирование в соответствии с указанными техническими требованиями. 4. Проверка сборки. При наличии требований и потребностей используйте тот же 3D промышленный видеоэндоскоп для проверки качества сборки; После завершения сборки или определенного процесса проверьте каждый компонент. Соответствует ли положение сборки компонентов требованиям чертежей или технических спецификаций; Есть ли дефект сборки. 5. Проверка излишков товара. Проверьте наличие остатков мусора, посторонних предметов и другого мусора внутри полости продукта.
Рентгеновский облучатель ВБК-01 генерирует высокоэнергетические рентгеновские лучи для облучения клеток или мелких животных. Рентгеновский облучатель используется для различных фундаментальных и прикладных исследований. На протяжении всей истории использовались радиоактивные изотопные облучатели, которые требовали транспортировки образцов в основную установку облучения. Сегодня в лабораториях можно установить более компактный, безопасный, простой и недорогой рентгеновский облучатель для удобного и быстрого облучения клеток. Различные образцы можно напрямую облучать в лаборатории, не влияя на фертильность или безопасность. Рентгеновский облучатель прост в использовании для персонала без профессиональной подготовки в области рентгенологии, и не требуется дорогостоящих лицензий или затрат на безопасность или обслуживание источника излучения. Это устройство просто в эксплуатации, безопасно, надежно и экономически эффективно, и может заменить источники радиоактивных изотопов. 1. Принцип действия рентгеновского облучателя: Рентгеновская трубка в рентгеновском облучателе генерирует высокоэнергетические электроны, которые производят рентгеновские лучи при столкновении с целевым материалом (обычно вольфрамом). Ускорение электронов посредством высоковольтного электрического поля для получения достаточной энергии для генерации требуемой длины волны и интенсивности рентгеновского излучения. Затем рентгеновские лучи настраиваются и оптимизируются с помощью ряда коллиматоров, фильтров и других устройств и, наконец, облучают образец. Основными компонентами рентгеновского облучателя являются: Рентгеновский облучатель в основном включает рентгеновские трубки, генераторы высокого напряжения, схемы управления, системы охлаждения, устройства безопасности и помещения для образцов. Среди них рентгеновская трубка является основным компонентом, отвечающим за генерацию рентгеновских лучей; Генератор высокого напряжения обеспечивает необходимое высокое напряжение и ток для рентгеновской трубки; Схема управления используется для управления такими параметрами, как генерация, интенсивность и время облучения рентгеновских лучей; Система охлаждения гарантирует, что оборудование не будет повреждено из-за перегрева во время работы; Устройство безопасности обеспечивает безопасность операторов и среды использования. 3. Области применения рентгеновского облучателя: Рентгеновский облучатель может использоваться в области биологии: его можно использовать для исследований клеточных культур и ингибирования деления, индукции изменений генов, исследований стволовых клеток, облучения мелких животных, исследований туберкулезных клеток, исследований клеток крови, облучения при трансплантации костного мозга, изучения трансплантационного иммунитета, иммуносупрессивной терапии, исследований радиационной чувствительности, исследований повреждений ДНК и т. д. Рентгеновский облучатель может использоваться в медицинской сфере: при лечении опухолей он может использоваться для локального облучения места опухоли, уничтожения раковых клеток или подавления их роста; рентгеновский облучатель также может использоваться в качестве вспомогательного средства диагностики некоторых заболеваний, например, для определения состояния путем наблюдения за изменениями изображений тканей и органов с помощью рентгеновских лучей. Рентгеновский облучатель может использоваться в пищевой промышленности: его можно использовать для облучения пищевых продуктов, уничтожения микроорганизмов в пищевых продуктах посредством рентгеновского облучения, подавления активности ферментов, тем самым продлевая срок годности пищевых продуктов, сохраняя их первоначальный вкус и пищевую ценность. Рентгеновский облучатель может использоваться в промышленной сфере: его можно использовать для испытания и модификации свойств материалов, например, для сшивания полимерных материалов с целью повышения их прочности и стабильности; его также можно использовать для неразрушающего контроля для обнаружения дефектов и трещин внутри материалов. Подводя итог, можно сказать, что рентгеновский облучатель — это важное научное и промышленное устройство с широкими перспективами применения и ценностью.
Рентгеновский ориентатор кристаллов является незаменимым инструментом для точной обработки и изготовления кристаллических приборов. Рентгеновский ориентатор кристаллов использует принцип рентгеновской дифракции для точного и быстрого определения угла резки природных и искусственных монокристаллов (пьезоэлектрических кристаллов, оптических кристаллов, лазерных кристаллов, полупроводниковых кристаллов) и оснащен режущим станком для направленной резки вышеупомянутых кристаллов. Рентгеновский ориентатор кристаллов широко используется в исследовательской, обрабатывающей и производственной отраслях промышленности кристаллических материалов. 1. Принцип работы рентгеновского кристаллического ориентатора: Рентгеновский ориентатор кристаллов использует принцип рентгеновской дифракции для точного и быстрого определения угла резки природных и искусственных монокристаллов (пьезоэлектрических кристаллов, оптических кристаллов, лазерных кристаллов, полупроводниковых кристаллов). Оснащенный режущим станком, рентгеновский ориентатор кристаллов может использоваться для направленной резки вышеупомянутых кристаллов и является незаменимым инструментом для прецизионной обработки и изготовления кристаллических устройств. Рентгеновский ориентатор кристаллов имеет точность измерения ± 30 дюймов, с цифровым режимом отображения и меньшим показанием 10 дюймов. Может измерять образцы диаметром 1-30 килограммов и 2-8 дюймов. Отображение угла: цифровой режим, точность измерения ± 30 дюймов. 2. Характеристики рентгеновского кристаллического ориентатора: Простота эксплуатации, нет необходимости в профессиональных знаниях или профессиональных навыках. Угол цифрового дисплея легко наблюдать, и он снижает ошибки чтения. Монитор можно обнулить в любом положении для легкого отображения значений отклонения угла кристалла. Двойной измерительный прибор угла может работать одновременно, что повышает эффективность. Рентгеновский кристаллический ориентатор имеет специальный интегратор с пиковым усилением, что повышает точность обнаружения. Интеграция рентгеновской трубки и высоковольтного кабеля повышает надежность высокого напряжения. Высоковольтный детектор использует модуль высокого напряжения постоянного тока и плату образца вакуумного всасывания, что повышает точность и скорость измерения угла. Основными компонентами рентгеновского ориентатора кристаллов являются: Радиационная трубка: Обычно в качестве анода используется медная мишень, которая заземляется, а для охлаждения применяется принудительное воздушное охлаждение. Высоковольтный источник питания: обеспечивает стабильное высокое напряжение и ток для рентгеновских трубок и является одним из основных компонентов всей системы. Детектор: используется для приема дифрагированных рентгеновских фотонов и преобразования их в электрические сигналы для последующей обработки и анализа. Гониометр: используется для точного измерения угла поворота образцов кристаллов, тем самым определяя информацию об ориентации плоскости дифракции. Система обработки данных: обрабатывает, анализирует и сохраняет сигналы, выдаваемые детектором, для получения информации о структуре кристалла. 4. Области применения рентгеновского кристаллоориентатора: Материаловедение: используется для изучения кристаллических структур различных материалов, включая металлы, керамику, полупроводники и т. д. Геология: используется для определения типов минералов, анализа структуры горных пород и т. д. Химия: используется для изучения структуры и изменений молекулярных кристаллов. Физика: используется для исследования микроструктуры и физических свойств вещества. Подводя итог, можно сказать, что благодаря постоянному прогрессу и инновациям в области науки и техники, рентгеновского кристаллического ориентатора, предполагается, что в будущем в различных областях будет применяться все больше новых материалов и технологий, что будет способствовать непрерывному развитию человеческого общества.
Рентгеновский кристаллоанализатор серии ТДФ — это крупногабаритный аналитический прибор, используемый для изучения внутренней микроструктуры веществ. Он в основном используется для ориентации монокристаллов, дефектоскопии, определения параметров решетки, определения остаточных напряжений, изучения структуры пластин и стержней, изучения структуры неизвестных веществ и дислокаций монокристаллов. Рентгеновский кристаллоанализатор — это прецизионный прибор, использующий принцип рентгеновской дифракции для анализа и определения внутренней структуры и состава веществ. 1. Принцип работы рентгеновского кристаллоанализатора: Анализатор рентгеновских кристаллов основан на законе Брэгга, который гласит, что при облучении кристалла рентгеновскими лучами происходит дифракция под определенным углом, образуя дифракционные пятна или пики. Измеряя углы и интенсивности этих дифракций, можно сделать вывод о внутренней структуре и составе кристалла. 2. Составные части рентгеновского кристаллоанализатора: (1) Источник рентгеновского излучения рентгеновского кристаллического анализатора: устройство, генерирующее рентгеновские лучи, обычно рентгеновская трубка, состоящая из нити накала, мишенного материала и высоковольтного источника питания. Рентгеновская трубка рентгеновского кристалл-анализатора: Номинальная мощность: 2,4 кВт; Размер фокуса (мм2): Точечный фокус (1 × 1) Линейный фокус (1 × 10); Материалы мишени: Cu, Ко, Фе, Кр, Мо, W и т.д. Высоковольтный генератор рентгеновского кристаллоанализатора (управляется импортным ПЛК): Напряжение трубки: 10-60 кВ; Ток трубки: 2-60 мА; Стабильность напряжения и тока трубки ≤ ± 0,005%; Номинальная выходная мощность: 3 кВт. Высоковольтный кабель для рентгеновского кристаллического анализатора: Диэлектрическое напряжение ≥ 100 кВ; Длина: 2м. (2) Спектральный кристалл рентгеновского кристалл-анализатора: используется для разделения рентгеновских лучей с различными длинами волн, является ключевым компонентом для достижения спектрального разделения. (3) Детектор рентгеновского кристаллического анализатора: используется для обнаружения рентгеновских лучей, рассеянных образцом, и преобразования их в электрические сигналы для последующей обработки. (4) Прибор для измерения угла рентгеновского кристаллического анализатора: прибор, используемый для точного измерения угла дифракции, который является одним из важных компонентов, обеспечивающих точность измерений. (5) Система управления и обработки данных рентгеновского кристаллического анализатора: используется для управления всем процессом анализа, обработки и анализа собранных данных. Современные приборы обычно оснащены компьютерным программным обеспечением для упрощения процесса анализа данных. 3. Характеристики рентгеновского кристаллоанализатора: В рентгеновском кристаллическом анализаторе серии ТДФ используется вертикальная трубчатая гильза, и одновременно можно использовать четыре окна. Рентгеновский кристаллический анализатор серии ТДФ использует импортную технологию управления ПЛК с высокой точностью управления и хорошими характеристиками защиты от помех, что позволяет добиться надежной работы системы. ПЛК управляет высоковольтным переключателем, подъемом и имеет функцию автоматической тренировки рентгеновской трубки, эффективно продлевая срок службы рентгеновской трубки и прибора. 4. Области применения рентгеновского кристаллоанализатора Материаловедение: исследование кристаллической структуры, фазовых переходов, дефектов и т. д. материалов для оказания важной поддержки при разработке новых материалов. Химия: включает кристаллохимию, медицинскую химию и т. д., может использоваться для анализа структур соединений, изучения механизмов химических реакций и т. д. Биология: используется для структурного анализа биомолекул, разработки и скрининга лекарственных препаратов и т. д., имеет большое значение для понимания жизненных процессов и механизмов заболеваний. Наука об окружающей среде играет важную роль в разработке катализаторов, характеристике наноматериалов и анализе загрязняющих веществ. Геология: Идентификация минералов, исследование генезиса горных пород, геохронология и другие области исследований также полагаются на рентгеновские анализаторы кристаллов. Рентгеновский анализатор кристаллов является мощным и широко используемым аналитическим инструментом, который играет незаменимую роль во многих областях. С постоянным развитием технологий и непрерывным развитием рынка его производительность и область применения будут и дальше улучшаться и расширяться.