
- дома
- >
Hовости
Рентгеновский монокристаллический дифрактометр ТД-5000 — это высокопроизводительный аналитический прибор, разработанный и произведенный компанией Даньдун Тонгда Технологии Ко., ООО. Ниже приводится подробное описание прибора: 1. Конструкция и технические характеристики монокристального дифрактометра (1) Основная техническая поддержка Использование технологии инструмента для измерения угла с четырьмя концентрическими окружностями гарантирует, что центральное положение инструмента для измерения угла остается постоянным во время вращения, что улучшает целостность и точность данных. Оснащенный гибридным пиксельным детектором в сочетании с подсчетом отдельных фотонов и гибридной пиксельной технологией, он обеспечивает низкий уровень шума и сбор данных с высоким динамическим диапазоном, что подходит для сложного анализа образцов. Высокомощный рентгеновский генератор (3 кВт или 5 кВт), поддерживающий выбор Cu/Мо и других целевых материалов, с фокусным размером 1 × 1 мм и расходимостью 0,5~1 мрад, отвечающий различным экспериментальным требованиям. (2) Модуляризация и оптимизация работы Вся машина использует технологию управления ПЛК и модульную конструкцию для достижения затыкать и играть аксессуаров, что сокращает процесс калибровки. Сенсорный экран отслеживает состояние прибора в режиме реального времени, а система получения данных одним щелчком упрощает процесс работы. Электронное устройство блокировки дверцы вывода обеспечивает двойную защиту с утечкой рентгеновского излучения ≤ 0,12 мкЗв/ч (при максимальной мощности). 2. Технические параметры монокристального дифрактометра (1) Точность и повторяемость Точность повторяемости угла 2 θ: 0,0001 ° Минимальный угол шага: 0,0001 ° Диапазон регулирования температуры: 100К~300К, точность регулирования ± 0,3К. (2) Характеристики детектора Чувствительная область: 83,8 × 70,0 мм² Размер пикселя: 172 × 172 мкм², погрешность расстояния между пикселями<0.03% Максимальная частота кадров: 20 Гц, время считывания 7 мс, диапазон энергий 3,5~18 кэВ. (3) Другие ключевые параметры Напряжение рентгеновской трубки: 10~60 кВ (1 кВ/шаг), ток 2~50 мА или 2~80 мА. Расход жидкого азота: 1,1~2 л/час (низкотемпературный эксперимент). 3. Области применения монокристального дифрактометра (1) Основное направление исследований Анализ структуры кристаллов: анализ атомного расположения, длины связей, угла связи, молекулярной конфигурации и плотности электронного облака монокристаллических материалов. Кристаллография лекарственных средств: изучение морфологии кристаллов молекул лекарственных средств, оценка стабильности и биологической активности. Разработка новых материалов: анализ трехмерной структуры синтезированных соединений для поддержки оптимизации характеристик материалов. Наноматериалы и исследования фазовых переходов: изучение характеристик нанокристаллов и механизма фазового перехода материалов. (2) Типичные пользователи Факультет материаловедения и технологий в Хуачжунском университете науки и технологий, Чжэцзянском университете, Китайском университете науки и технологий и других университетах. Научно-исследовательские институты, такие как Китайская корпорация аэрокосмической науки и технологий и Китайская корпорация судостроительной промышленности. 4. Послепродажное обслуживание монокристаллического дифрактометра Предоставляем оригинальные запасные части, техническое обслуживание на дому, удаленную диагностику и услуги по обновлению программного обеспечения. Регулярные услуги калибровки (в соответствии с международными стандартами) и предоставление пользователям обучения по эксплуатации и применению. 5. Аксессуары и расширенные функции для монокристального дифрактометра (1) Дополнительные приспособления Многослойная пленочная фокусирующая линза (расхождение 0,5~1 мрад). Низкотемпературное устройство (охлаждение жидким азотом). (2) Совместимые устройства Его можно использовать совместно с рентгенофлуоресцентным спектрометром (РФС), сканирующим электронным микроскопом (СЭМ) и т. д. для проведения многомасштабного анализа материалов. В целом, как высококлассный монокристаллический дифрактометр, производительность TD-5000 приблизилась к международным стандартам, что делает его особенно подходящим для университетов, научно-исследовательских институтов и нужд разработки высококлассных материалов. Для получения более подробной информации, пожалуйста, посетите официальный сайт Dandong Tongda Technology Co., Ltd.
Рентгеновский ориентатор кристаллов является незаменимым инструментом для точной обработки и изготовления кристаллических приборов. Рентгеновский ориентатор кристаллов использует принцип рентгеновской дифракции для точного и быстрого определения угла резки природных и искусственных монокристаллов (пьезоэлектрических кристаллов, оптических кристаллов, лазерных кристаллов, полупроводниковых кристаллов) и оснащен режущим станком для направленной резки вышеупомянутых кристаллов. Рентгеновский ориентатор кристаллов широко используется в исследовательской, обрабатывающей и производственной отраслях промышленности кристаллических материалов. 1. Принцип работы рентгеновского кристаллического ориентатора: Рентгеновский ориентатор кристаллов использует принцип рентгеновской дифракции для точного и быстрого определения угла резки природных и искусственных монокристаллов (пьезоэлектрических кристаллов, оптических кристаллов, лазерных кристаллов, полупроводниковых кристаллов). Оснащенный режущим станком, рентгеновский ориентатор кристаллов может использоваться для направленной резки вышеупомянутых кристаллов и является незаменимым инструментом для прецизионной обработки и изготовления кристаллических устройств. Рентгеновский ориентатор кристаллов имеет точность измерения ± 30 дюймов, с цифровым режимом отображения и меньшим показанием 10 дюймов. Может измерять образцы диаметром 1-30 килограммов и 2-8 дюймов. Отображение угла: цифровой режим, точность измерения ± 30 дюймов. 2. Характеристики рентгеновского кристаллического ориентатора: Простота эксплуатации, нет необходимости в профессиональных знаниях или профессиональных навыках. Угол цифрового дисплея легко наблюдать, и он снижает ошибки чтения. Монитор можно обнулить в любом положении для легкого отображения значений отклонения угла кристалла. Двойной измерительный прибор угла может работать одновременно, что повышает эффективность. Рентгеновский кристаллический ориентатор имеет специальный интегратор с пиковым усилением, что повышает точность обнаружения. Интеграция рентгеновской трубки и высоковольтного кабеля повышает надежность высокого напряжения. Высоковольтный детектор использует модуль высокого напряжения постоянного тока и плату образца вакуумного всасывания, что повышает точность и скорость измерения угла. Основными компонентами рентгеновского ориентатора кристаллов являются: Радиационная трубка: Обычно в качестве анода используется медная мишень, которая заземляется, а для охлаждения применяется принудительное воздушное охлаждение. Высоковольтный источник питания: обеспечивает стабильное высокое напряжение и ток для рентгеновских трубок и является одним из основных компонентов всей системы. Детектор: используется для приема дифрагированных рентгеновских фотонов и преобразования их в электрические сигналы для последующей обработки и анализа. Гониометр: используется для точного измерения угла поворота образцов кристаллов, тем самым определяя информацию об ориентации плоскости дифракции. Система обработки данных: обрабатывает, анализирует и сохраняет сигналы, выдаваемые детектором, для получения информации о структуре кристалла. 4. Области применения рентгеновского кристаллоориентатора: Материаловедение: используется для изучения кристаллических структур различных материалов, включая металлы, керамику, полупроводники и т. д. Геология: используется для определения типов минералов, анализа структуры горных пород и т. д. Химия: используется для изучения структуры и изменений молекулярных кристаллов. Физика: используется для исследования микроструктуры и физических свойств вещества. Подводя итог, можно сказать, что благодаря постоянному прогрессу и инновациям в области науки и техники, рентгеновского кристаллического ориентатора, предполагается, что в будущем в различных областях будет применяться все больше новых материалов и технологий, что будет способствовать непрерывному развитию человеческого общества.
Рентгеновский кристаллоанализатор серии ТДФ — это крупногабаритный аналитический прибор, используемый для изучения внутренней микроструктуры веществ. Он в основном используется для ориентации монокристаллов, дефектоскопии, определения параметров решетки, определения остаточных напряжений, изучения структуры пластин и стержней, изучения структуры неизвестных веществ и дислокаций монокристаллов. Рентгеновский кристаллоанализатор — это прецизионный прибор, использующий принцип рентгеновской дифракции для анализа и определения внутренней структуры и состава веществ. 1. Принцип работы рентгеновского кристаллоанализатора: Анализатор рентгеновских кристаллов основан на законе Брэгга, который гласит, что при облучении кристалла рентгеновскими лучами происходит дифракция под определенным углом, образуя дифракционные пятна или пики. Измеряя углы и интенсивности этих дифракций, можно сделать вывод о внутренней структуре и составе кристалла. 2. Составные части рентгеновского кристаллоанализатора: (1) Источник рентгеновского излучения рентгеновского кристаллического анализатора: устройство, генерирующее рентгеновские лучи, обычно рентгеновская трубка, состоящая из нити накала, мишенного материала и высоковольтного источника питания. Рентгеновская трубка рентгеновского кристалл-анализатора: Номинальная мощность: 2,4 кВт; Размер фокуса (мм2): Точечный фокус (1 × 1) Линейный фокус (1 × 10); Материалы мишени: Cu, Ко, Фе, Кр, Мо, W и т.д. Высоковольтный генератор рентгеновского кристаллоанализатора (управляется импортным ПЛК): Напряжение трубки: 10-60 кВ; Ток трубки: 2-60 мА; Стабильность напряжения и тока трубки ≤ ± 0,005%; Номинальная выходная мощность: 3 кВт. Высоковольтный кабель для рентгеновского кристаллического анализатора: Диэлектрическое напряжение ≥ 100 кВ; Длина: 2м. (2) Спектральный кристалл рентгеновского кристалл-анализатора: используется для разделения рентгеновских лучей с различными длинами волн, является ключевым компонентом для достижения спектрального разделения. (3) Детектор рентгеновского кристаллического анализатора: используется для обнаружения рентгеновских лучей, рассеянных образцом, и преобразования их в электрические сигналы для последующей обработки. (4) Прибор для измерения угла рентгеновского кристаллического анализатора: прибор, используемый для точного измерения угла дифракции, который является одним из важных компонентов, обеспечивающих точность измерений. (5) Система управления и обработки данных рентгеновского кристаллического анализатора: используется для управления всем процессом анализа, обработки и анализа собранных данных. Современные приборы обычно оснащены компьютерным программным обеспечением для упрощения процесса анализа данных. 3. Характеристики рентгеновского кристаллоанализатора: В рентгеновском кристаллическом анализаторе серии ТДФ используется вертикальная трубчатая гильза, и одновременно можно использовать четыре окна. Рентгеновский кристаллический анализатор серии ТДФ использует импортную технологию управления ПЛК с высокой точностью управления и хорошими характеристиками защиты от помех, что позволяет добиться надежной работы системы. ПЛК управляет высоковольтным переключателем, подъемом и имеет функцию автоматической тренировки рентгеновской трубки, эффективно продлевая срок службы рентгеновской трубки и прибора. 4. Области применения рентгеновского кристаллоанализатора Материаловедение: исследование кристаллической структуры, фазовых переходов, дефектов и т. д. материалов для оказания важной поддержки при разработке новых материалов. Химия: включает кристаллохимию, медицинскую химию и т. д., может использоваться для анализа структур соединений, изучения механизмов химических реакций и т. д. Биология: используется для структурного анализа биомолекул, разработки и скрининга лекарственных препаратов и т. д., имеет большое значение для понимания жизненных процессов и механизмов заболеваний. Наука об окружающей среде играет важную роль в разработке катализаторов, характеристике наноматериалов и анализе загрязняющих веществ. Геология: Идентификация минералов, исследование генезиса горных пород, геохронология и другие области исследований также полагаются на рентгеновские анализаторы кристаллов. Рентгеновский анализатор кристаллов является мощным и широко используемым аналитическим инструментом, который играет незаменимую роль во многих областях. С постоянным развитием технологий и непрерывным развитием рынка его производительность и область применения будут и дальше улучшаться и расширяться.
1. Функция монокристаллического дифрактометра: Рентгеновский монокристаллический дифрактометр ТД-5000 в основном используется для определения трехмерной пространственной структуры и плотности электронного облака кристаллических веществ, таких как неорганические, органические и металлические комплексы, а также для анализа структуры специальных материалов, таких как двойникование, несоразмерные кристаллы, квазикристаллы и т. д. Определите точное трехмерное пространство (включая длину связи, угол связи, конфигурацию, конформацию и даже плотность электронов связи) новых молекул соединений (кристаллических) и фактическое расположение молекул в решетке; рентгеновский монокристаллический дифрактометр может предоставить информацию о параметрах кристаллической ячейки, пространственной группе, молекулярной структуре кристалла, межмолекулярных водородных связях и слабых взаимодействиях, а также структурную информацию, такую как молекулярная конфигурация и конформация. Рентгеновский монокристаллический дифрактометр широко используется в аналитических исследованиях в химической кристаллографии, молекулярной биологии, фармакологии, минералогии и материаловедении. Рентгеновский монокристаллический дифрактометр — это высокотехнологичный продукт, финансируемый Министерством науки и технологий Китая в рамках Национального проекта по разработке крупных научных приборов и оборудования под руководством компании Даньдун Тонгда Технологии Ко., ООО., который заполняет пробел в разработке и производстве монокристаллических дифрактометров в Китае. 2. Характеристики монокристаллического дифрактометра: Вся машина использует технологию управления с программируемым логическим контроллером (ПЛК); Простая в эксплуатации система сбора одним щелчком; Модульная конструкция, аксессуары «затыкать и играть», нет необходимости в калибровке; Онлайн-мониторинг в режиме реального времени через сенсорный экран, отображение состояния прибора; Мощный рентгеновский генератор со стабильной и надежной работой; Электронное устройство блокировки свинцовой двери, двойная защита. 3. Точность монокристаллического дифрактометра: 2 Точность повторяемости угла θ: 0,0001 °; Минимальный шаг угла: 0,0001 ° Диапазон регулирования температуры: 100К-300К; Точность регулирования: ± 0,3К 4. Прибор для измерения угла, используемый в монокристаллическом дифрактометре: Использование техники четырех концентрических окружностей гарантирует, что центр инструмента для измерения угла остается неизменным независимо от любого вращения, достигая цели получения наиболее точных данных и получения более высокой полноты. Четыре концентрических окружности являются необходимым условием для сканирования обычного монокристаллического дифрактометра. 5. Высокоскоростной двумерный детектор, используемый в рентгеновском монокристаллическом дифрактометре: Детектор объединяет ключевые технологии подсчета отдельных фотонов и смешанную пиксельную технологию для достижения наилучшего качества данных, обеспечивая при этом низкое энергопотребление и низкое охлаждение. Он применяется в различных областях, таких как синхротронное излучение и обычные лабораторные источники света, эффективно устраняя помехи шума считывания и темнового тока. Смешанная пиксельная технология может напрямую обнаруживать рентгеновские лучи, облегчая различение сигнала и эффективно предоставляя высококачественные данные. 6. Низкотемпературное оборудование, используемое в рентгеновском монокристаллическом дифрактометре: Данные, собранные с помощью низкотемпературного оборудования, дают более идеальные результаты. С помощью низкотемпературного оборудования можно обеспечить более выгодные условия, чтобы нежелательные кристаллы могли получить идеальные результаты, а идеальные кристаллы могли бы получить еще более идеальные результаты. Диапазон регулирования температуры: 100К~300К; Точность регулирования: ± 0,3К; Расход жидкого азота: 1,1~2 литра/час; 7. Дополнительный аксессуар, многослойная пленочная фокусирующая линза: Мощность рентгеновской трубки: 30 Вт или 50 Вт и т.д.; Расходимость: 0,5~1 мрад; Материал мишени рентгеновской трубки: мишень Мо/Cu; Фокусное пятно: 0,5~2 мм.
Графитовый изогнутый кристаллический монохроматор, используемый в рентгеновских дифрактометрах, является ключевым компонентом для выбора определенных длин волн рентгеновских лучей и удаления нежелательного излучения, такого как линии K β и флуоресцентные рентгеновские лучи. Графитовый изогнутый кристаллический монохроматор представляет собой компонент, установленный перед детектором рентгеновского излучения, который монохроматизирует рентгеновские лучи, проходящие через приемную щель, и обнаруживает только характеристические рентгеновские лучи Kα в рентгеновском спектре. Используя это устройство, можно полностью устранить непрерывное рентгеновское излучение, характеристическое рентгеновское излучение K β и флуоресцентное рентгеновское излучение, что позволяет проводить рентгеновский дифракционный анализ с высоким отношением сигнал/шум. Когда рентгеновские трубки с медной мишенью используются в сочетании с соответствующими монохроматорами, можно устранить флуоресцентные рентгеновские лучи, генерируемые образцами на основе Мн, Фе, Ко, Ни, что делает их пригодными для анализа различных образцов. принцип работы: Дифракция Брэгга: согласно закону Брэгга, когда рентгеновские лучи падают на кристалл под определенным углом, если 2dsin θ=n λ (где d — межплоскостное расстояние кристалла, θ — угол падения, λ — длина волны рентгеновского луча, а n — целое число), произойдет дифракция. Этот принцип используется для регулировки ориентации кристалла таким образом, чтобы через него могли проходить только рентгеновские лучи, соответствующие определенным условиям, тем самым достигая выбора длин волн рентгеновского излучения. Энергетическое разрешение: Благодаря межплоскостному расстоянию и структурным характеристикам графитовых кристаллов, он может эффективно различать рентгеновские лучи разных энергий. Графитовый изогнутый кристаллический монохроматор с высоким энергетическим разрешением может дополнительно уменьшить нежелательное излучение и улучшить качество дифракционных данных. Конструктивные особенности: Изогнутая форма: графитовый изогнутый кристаллический монохроматор обычно имеет изогнутую форму, которая помогает фокусировать рентгеновские лучи и улучшить эффективность дифракции. В то же время изогнутая форма также помогает снизить нагрузку на кристалл, улучшить его стабильность и срок службы. Графит высокой чистоты: Графитовый изогнутый кристалл-монохроматор обычно изготавливается из графитовых материалов высокой чистоты, чтобы обеспечить их хорошие дифракционные характеристики и стабильность. Высокая эффективность дифракции: прибор обладает высокой эффективностью дифракции, что позволяет эффективно выбирать рентгеновские лучи нужной длины волны, тем самым улучшая качество дифракционных данных. Широкий диапазон длин волн: может работать в широком диапазоне длин волн и подходит для различных типов экспериментов по рентгеновской дифракции. Хорошая стабильность: Благодаря использованию графитового материала высокой чистоты он обладает хорошей стабильностью и длительным сроком службы. Области применения: Материаловедение: В области материаловедения рентгеновские дифрактометры широко используются для изучения кристаллической структуры, фазового состава и других свойств материалов. Графитовый изогнутый кристаллический монохроматор, как важный компонент рентгеновского дифрактометра, обеспечивает важную техническую поддержку для исследований в области материаловедения. Физика: В области физики рентгеновские дифрактометры также используются для изучения микроструктуры и физических свойств вещества. Подводя итог, можно сказать, что монохроматор на основе изогнутого графитового кристалла, используемый в рентгеновских дифрактометрах, представляет собой эффективное и точное устройство для отбора и фильтрации рентгеновских лучей, обеспечивающее важную техническую поддержку экспериментов по рентгеновской дифракции.
Ориентатор рентгеновского кристалла работает по принципу рентгеновской дифракции. Высокое напряжение, генерируемое высоковольтным трансформатором, воздействует на рентгеновскую трубку, производя рентгеновские лучи. Когда рентгеновские лучи облучают образец, дифракция происходит, когда выполняется условие дифракции Брэгга (n λ=2dsin θ). Среди них λ — длина волны рентгеновских лучей, d — расстояние между атомными плоскостями внутри кристалла, а θ — угол между падающими рентгеновскими лучами и кристаллической плоскостью. Линия дифракции принимается счетной трубкой и отображается на микроамперметре усилителя. При использовании монохроматора линия дифракции монохроматизируется, затем принимается счетчиком и отображается на микроамперметре усилителя, тем самым повышая точность измерений. Рентгеновский кристаллоориентатор позволяет точно и быстро определять угол резки природных и искусственных монокристаллов (пьезоэлектрических кристаллов, оптических кристаллов, лазерных кристаллов, полупроводниковых кристаллов) и оснащен режущим станком для направленной резки вышеуказанных кристаллов. Рентгеновский кристаллоориентатор является незаменимым инструментом для прецизионной обработки и изготовления кристаллических приборов. Рентгеновский кристаллоориентатор широко используется в исследовательской, обрабатывающей и производственной отраслях промышленности кристаллических материалов. Рентгеновский кристаллический ориентатор прост в эксплуатации, не требует профессиональных знаний или квалифицированных методов, отображает угол в цифровом виде, прост для наблюдения и снижает ошибки считывания. Дисплей рентгеновского кристаллического ориентационного прибора может быть обнулён в любом положении, что позволяет легко отображать значение отклонения угла чипа. Двойной угловой измерительный прибор может работать одновременно, что повышает эффективность. Рентгеновский кристаллический ориентатор имеет специальный интегратор с пиковым усилением, что повышает точность обнаружения. Интеграция рентгеновской трубки и высоковольтного кабеля повышает надежность высокого напряжения. Высоковольтный детектор использует модуль высокого напряжения постоянного тока и плату образца вакуумного всасывания, что повышает точность и скорость измерения угла. В целом рентгеновский ориентатор кристаллов представляет собой прецизионный прибор, работающий на принципе рентгеновской дифракции, который обеспечивает важную техническую поддержку для исследования кристаллических материалов и связанных с ними приложений за счет точного измерения угла среза кристаллов.
Рентгеновский кристаллоанализатор серии ТДФ — это крупногабаритный аналитический прибор и рентгеновский прибор, используемый для изучения внутренней микроструктуры материалов. Он в основном используется для ориентации монокристаллов, дефектоскопии, определения параметров решетки, определения остаточных напряжений, изучения структуры пластин и стержней, изучения структуры неизвестных веществ и дислокаций монокристаллов.
Рентгеновский монокристаллический дифрактометр ТД-5000 в основном используется для определения трехмерной пространственной структуры и плотности электронного облака кристаллических веществ, таких как неорганические, органические и металлические комплексы, а также для анализа структуры специальных материалов, таких как двойникование, несоразмерные кристаллы, квазикристаллы и т. д. Определите точное трехмерное пространство (включая длину связи, угол связи, конфигурацию, конформацию и даже плотность электронов связи) новых молекул соединений (кристаллических) и фактическое расположение молекул в решетке; Он может предоставить информацию о параметрах кристаллической ячейки, пространственной группе, молекулярной структуре кристалла, межмолекулярных водородных связях и слабых взаимодействиях, а также структурную информацию, такую как молекулярная конфигурация и конформация. Рентгеновский монокристаллический дифрактометр широко используется в аналитических исследованиях в химической кристаллографии, молекулярной биологии, фармакологии, минералогии и материаловедении. Монокристаллический рентгеновский дифрактометр — это высокотехнологичный продукт в рамках Национального проекта по разработке крупных научных приборов и оборудования Министерства науки и технологий, возглавляемого компанией Даньдун Тонгда Технологии Ко., ООО., который заполняет пробел в разработке и производстве монокристаллических рентгеновских дифрактометров в Китае.
Рентгеновский кристаллоанализатор серии ТДФ — это крупногабаритный аналитический прибор, используемый для изучения внутренней микроструктуры веществ. Он в основном используется для ориентации монокристаллов, дефектоскопии, определения параметров решетки, определения остаточных напряжений, изучения структуры пластин и стержней, изучения структуры неизвестных веществ и дислокаций монокристаллов.
Рентгеновский монокристаллический дифрактометр ТД-5000 в основном используется для определения трехмерной пространственной структуры и плотности электронного облака кристаллических веществ, таких как неорганические, органические и металлические комплексы, а также для анализа структуры специальных материалов, таких как двойникование, несоразмерные кристаллы, квазикристаллы и т. д. Определите точное трехмерное пространство (включая длину связи, угол связи, конфигурацию, конформацию и даже плотность электронов связи) новых молекул соединений (кристаллических) и фактическое расположение молекул в решетке; Он может предоставить информацию о параметрах кристаллической ячейки, пространственной группе, молекулярной структуре кристалла, межмолекулярных водородных связях и слабых взаимодействиях, а также структурную информацию, такую как молекулярная конфигурация и конформация. Он широко используется в аналитических исследованиях в химической кристаллографии, молекулярной биологии, фармакологии, минералогии и материаловедении.
Волоконные аксессуары тестируются на их уникальную кристаллическую структуру с использованием метода рентгеновской дифракции (пропускания). Тестируйте ориентацию образца на основе кристалличности волокна и ширины полупика волокон. Этот тип аксессуаров обычно устанавливается на широкоугольном дифрактометре и в основном используется для изучения текстуры тонких пленок на подложке, проведения обнаружения кристаллической фазы, ориентации, стресс-тестирования и других тестов.
Графитовый изогнутый кристаллический монохроматор устанавливается перед детектором рентгеновского излучения, который монохроматизирует рентгеновские лучи, проходящие через приемную щель, и обнаруживает только характеристические рентгеновские дифрактометрические принадлежности K α рентгеновского спектра. Используя это устройство, можно полностью устранить непрерывное рентгеновское излучение, характеристическое рентгеновское излучение K β и флуоресцентное рентгеновское излучение, что позволяет проводить рентгеновский дифракционный анализ с высоким отношением сигнал/шум. При использовании рентгеновских трубок с медной мишенью в сочетании с соответствующими монохроматорами можно устранить флуоресцентное рентгеновское излучение, генерируемое образцами на основе Мн, Фе, Ко, Ни, что делает их пригодными для анализа различных образцов.